SEMESTRAL EXAMINATION B. MATH III YEAR, I SEMESTER 2012-2013 COMPLEX ANALYSIS

The 7 questions below carry a total of 110 marks. The maximum you can score is 100. Time limit is 3 hours.

Notations: U is the open unit disk $\{z : |z| < 1\}$. $H(\Omega)$ is the set of all holomorphic functions on Ω .

1. Let
$$\gamma(t) = e^{2\pi i t}, 0 \le t \le 1$$
. If z_1 and $z_2 \in U$ show that $\int_{\gamma} \frac{1}{(\zeta - z_1)(\zeta - z_2)} d\zeta =$

$$[10]$$

2. If
$$f \in H(U)$$
 and f is bounded prove that $\sum_{n=0}^{\infty} \left| \frac{f^{(n)}(0)}{n!} \right|^2 < \infty$. If $f \in H(U)$

and
$$\sum_{n=0}^{\infty} \left| \frac{f^{(n)}(0)}{n!} \right|^2 < \infty$$
 can we conclude that f is bounded? [20]

Hint: Consider $\int_{0}^{2\pi} |f(re^{it})|^2 dt.$

that f is the identity map.

0.

3. Let
$$p(z) = \sum_{j=0}^{N} c_j z^j$$
 with $c_N \neq 0$. If $R = \max\{1, \frac{1}{|c_N|} \sum_{j=0}^{N-1} |c_j|\}$ show that all the zeros of p lie on $B(0, R)$. [15]

[20]

4. Let $f: U \to U$ be holomorphic. If f has two or more fixed points show

Hint: first consider the case when one of the fixed points is 0.

5. Prove that
$$\int_{-\infty}^{\infty} e^{itx} e^{-x^2/2} dx = \sqrt{2\pi} e^{-t^2/2}$$
 for every real number t. [20]

6. Let $f \in H(U \setminus \{0\})$ and $f(\frac{1}{n}) = 0$ for all positive integers n. Show that either f is identically 0 or its range is dense in \mathbb{C} . [10]

7. Let $R = \frac{p}{q}$ be a rational function such that $\deg(q) > \deg(p) + 1$. Show that the sum of all the residues of R is 0. [15]